.

-

D=A045 843 SOUTH CAROLINA UNIV COLUMBIA DEPT OF MATHEMATICS AND==ETC F/6 20/3 !:'
CONCAVITY ARGUMENTS AND GROWTH ESTIMATES FOR LINEAR INTEGRODIFF==ETC(U)
1977  F BLOOM AFOSR=77=3396 ‘

UNCLASSIFIED AFOSR=TR=77=1217 NL

| oF |
;‘EL\‘J&F‘H .......l
END
Filmen
[[ =77
noc




L B

" OF 'm;.“c (Q.Ml_unu.a

CECURE Y CLASSIE L A )
' + /] REPORT DOCUMENTATION ?ACE "
‘ : e e T T e
{,—'/ \ lc“hu: —[217 , {
é’ A TITLE (and i V- -
( ‘ ONCAV ITY ARGUMENTS Vpo\ml gsmmls m*‘ Interim 2.
“INTEGROD I FFERENT 1AL FQUAT IONS 1IN £ 2
3. DAWPED EQUATI ICATIONS TO A CLASS OF [T Fiarommes ohe REro 5
HOLOHERD OTROP I B! RICS, .- gu ",
|7 NG e pu— 'S LRI AAL I OF CRALT SumBEN
Frederick Mloom | [ 2.t (\{g\wﬁr (5 —-77-339% "
0 -
S SR TR et 1% TRty T SR T
it

Ilnlnnlty of Senlh Carolina

o—

Department of Mathematic:and Computer Science
Columbia, SC 61102f7) 2
. CONTROLLING OFFICE NAME AND ADORESS ’
Alr Force Office of Scientifc Research/wt n )
Bolling AFS, DC 20332
'ruzgmrm Tor tvie sapot)
UNCLASSIFIED

ADA045843

73 :3};::/

2. OISTRIAUTION STATEMENT (of e sbamact sntasad b Blach 20 0F diesesd Beom Sapos) ,

‘ P

18 SUPPLEMENTARY NOTES

-
D413 KEY WORDS (Continue on ahde i oy W demife by Sieck member)

2 aLf€

. ABSTRACT (Continue on reverse side If necessary and identily By Block mumber)
Concavity arguments are employed so as to obtain growth estimates for solutions
to two initial=-value problems associated with a class of damped integro-

differential equations in Hilbert space; by applying the results obtained
in this abstract setting rowth estimates! for the gradients of

electric displacement fields which occur in a class of holohedral isotropic
nonconducting rigid dielectrics.

PSR

Y

oo Vi Wi _UNCLASS IF 1ED

EDITION OF | NOV 65 1S OSSOLETE




AFOSRTR- 77- 1217
Concavity Arguments and Growth Estimates for Linear Integro-

differential Equations in Hilbert Space II. Damped Equations
and Applications to a Class of Holohedral Isotropic Dielectrics®

Frederick Bloom
Department of Mathematics and Computer Science
University of South Carolina D D g
Columbia, South Carolina 29208
,.

Abstract B

Concavity arguments are employed so as to obtain growth

estimates for solutions to two initial-value problems associated
with a class of damped integrodifferential equations in Hilbert
space; by applying the results obtained in this abstract setting
we obtain growth estimates for the gradients of electric dis-

placement fields which occur in a class of holohedral isotropic

nonconducting rigid dielectrics.
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1. Introduction é

In [1) we employed a modified version of a cdncavity argumen
due to Levine (2] to obtain growth estimates for solutions to a
class of initial-value problems associated with an undamped linear
integrodifferential equation in Hilbert space; our results were
subsequently applied to the derivation of growth estimates for
the gradients of electric displacement fields occuring in a
class of rigid nonconducting material dielectrics of Maxwell-
Hopkinson type. Unlike the stability and growth estimates which
were obtained in (3], the results of [1])do not require that the
electric displacement fields belong to certain uniformly bounded
sets in a given function space.

In the present work we will extend certain of the results
of [1] to a class of damped linear integror ~ential equations
in Hilbert space; it will be clear from the m of our results,
and the specific content of the associated hypotheses, that
analogous estimates for the undamped equations can not be recovered
from the estimates contained in the present paper by simply setting
the damping coefficient equal to zero. The growth estimates derived
- in §2 are applied, in §3, to the evolution of electric displace=-
ment fields which occur in a class of holohedral isotropic rigid
dielectrics of the type first studied by Toupin & Rivlin (413
stability and growth estimates for electric displacement fields
which uccar in such dielectrics were previously obtained in (5]
but, .- .n [3], these estimates were derived via a logarithmic

convexity argument which, by its intrinsic nature, requires that




the class of electric displacement fields considered as admissible

satisfy an a priori upper bound in the norm of a certain Hilbert

space.

2. Growth Estimates for a Damped Abstract Integrodifferential
Equation.

As in (1] we will denote by H any real Hilbert space with

inner-product <,> and norm ||(*)||. By H, we denote a second

Hilbert space with inner-product <,>, and norm [[(*)]]| ; we
assume that H, ¢ H, both algebraically and topologically, and
we let Yy > 0 denote the embedding constant for the map i: H, + H
(i.e., for all v e H,, Ilvll s vllvll,). Finally we define H_

to be the completion of H under the norm ||(+)||_ that is given by H

lwl)_ = sup Cl<v,w>]/]lv]],)
vam, 7 ¥

Appearing in the statement of the abstract initial-value

problems which we will consider are operators N e Lg(H, H)

bt i

and K e Lz((-ﬂ,ﬂ); LSCH+,H_)) where LS(H*,H_) denotes the space

.

of all bounded linear operators from H, into H_. We assume

T e
.

that 5 (t), the strong operator derivative of K, exists and that

§t € Lz((-ﬂ,ﬂ); LS(H+,H_)). In addition we will require that

(i), - <v, K(0)y> 2 O, Vv e H,
(Xi) <y, Nv> 2 0, v! € H,

and

e — e —— X T 1)




T (t ' i~
fo 211K =01 (g ydrdt <

for each T > 0. We remark that whereas (ii) was not needed for
the logarithmic convexity argument that was employed in [5] we
did require in [5] that K(0) satisfy a hypothesis which is

stronger than (i) above, namely,

(') - <v, K> 2 kllvilZ, Wy e n,

with ¢k 2 YT sup ||K _(t)]|]
572y 12e Lg(H, ,H_)

Now, let I' > O be a given real number. The problems of

interest to us here assume the following forms:

(1)

Problem A For any a > O denote by ga a strong solution to

a a a t a
(2.1a) uge + Tug - Nuo + O K(t-t)y(r)dr = 0, O st <T

(2.10)  u®(0) = auy, u$C0) = vy (ug, vo € H)

(2.1c) ' g“(t) UETEy =8 f <0

where g:(-w,O) + H_ and satisfies f?“IIU(T)||+dT < o,

We seek to derive a lower bound for sup lluall+ in
-<t<T ~

terms ofla, ¥Ys T Uys Voo U, the length of the interval [O0,T),

and the operator norms of N, 5, and Kt'

(1) u® ¢ c2¢0,m™; H,), for each a > 0, with u® ¢ C([0,T); H,)

-~

and 9?1 « CCLO,T); H_).

~t

———— ———
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Problem B For any § > O denote by 93 a strong solution to

2.2a) b+ ruf - e e fke-nflodr =0, ot
(2.2b) wB0) = u,, udo) = v Gioi v, ¢ K)

. u s Yy Yo ug» Yo ¢ H,
(2.2¢) 98(1) = 3(8)9(1), -®w<T1T<0

where g(B) is a monotonically increasing function of 8 for

0 < B <=, We seek a lower bound for sup ||u8l|* in terms
-o<t<T =

of the data indicated above.

In each of the two problems stated above we will require,

in addition to conditions (i) - (iii) that u,, v, and U satisfy

Giv) <uy,Vy> > 0

and
(v) <u,, f?.g(-t)g(T)dT't <0
We are now ready to state and prove our first estimate,

namely,

Theorem II.1 Let u® be a strong solution to (2.la) - (2.lc)

and suppose that

(2.3a) (@) Ilyglt? s % <ugs v
2<u, , V>
(2.3b) ) T>f4en 20 =0 .
EiBgate” ~ Flitgl!
Then for each a > "YO"/<50’ §90>k

il - —— kiaiuiais —— " i




(2.4) sup Ilua(t)ll+ 2
-o<t<T ~

[ Sty

[+
YIT

where

(2.8)  Jp = WINN g gy * Jo KO (g g )9t

T (t
*.fo ]_.|lgt(t-,t)llLs(H+’H_)drdt

Proof Suppose that for some a = a,

&> llygli/<uy, Nug>™

0

- <u,, [ _K(-t)UCT)dT>]%

(2.6) sup |u®)|, ¢« [—=2 === = /g
-o<t<T ~ sz

where T satisfies (2.3b). If, as in [1], we set

(2.7) Fg(t) = <u®(t), u®(t)>, O0'st <T

then a direct computation yields

(2.8)  FgF=" - (a+1)F 2 = 4(3+1)82.

8 .n - a _a
+ 2FE{<E » Upy> = (2a+1)<3t, Et>}

where s2 = 11u*11? 11u211? - <«u®, u¥> 2 0 by virtue of the

S ki b gl
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Schwartz inequality. Thus
¥ 19
EOR) - . I | (R ar T
(2.9) Fara §a+l)Pa 2 2F0Ja, 0'st<?

where by (2.8) and (2.1a)

<9°, §g°> - <E“, IE“K(t-t)ga(t)d1>

(2.10) Ja(t) =
3 = A = =
- r<9 - u:> - (2a+l)<g:, g:>

We will show that [ert(rg°)'3' < 0 for 0 s t < T by proving that,
under hypotheses (i) - (v) above, Ja(t) 2 -(P/Z)F&(t); this, in
turn, will lead to a contradiction of (2.6). Directly from

(2.10) we have

i "X 5
(2.11) Lo = 2<ud, Mu% - & «®, [T KG-Du%(nde
- r<gg, ug> - reu?, 3:t> - 2(2a+1))<ug, g:t>

- O a d a (t a
- 4a<ug, Nu'> - o= <un, | _ Kt-1)u"(1)dT>

Qa o Qa a - a a
- +
r<gt, u,> r<u™, Upy 2r(2a+1)<gt, u.>

+ 25+ D)<u, [T K(t-1)u?(1)dr>
By integrating (2.11) from zero to t, using the fact that

(2.12) 32(0) = aeug, Nug> - G<ug, [ K(-D)U(T)dD

¥ a 2
_]uxgo’ !o> - (20*1)”\:0”

o™ PRy " ;
T — M v

isiiiiiibconk




¥ 2 J
and dropping the term proportional to Ilg:ll , we obtain

e, 2N

J=(0) - 2a(<u®, Nu®> - a%<uy, Nuy>)

v

~~0

€2.13) Ja(t)
z - <9a, ]Ewgtt-t)gatr)dr>

+ a<ug, f?og(-r)g(r)dt>

S ——

6 o -
SRt b dee o ocdhe ]

22a+1) 5 <ul, [T K(r-1u®)dr>dr

(2&+1)[&2<go, Nuy> - ]lvot|2] - 2&<g°, gg°>

+

+ 2(2a+1) [geud, [T K(r-Du*Q)ar>dr

= <gu, IE,§(t-T)ga(r)dt> - P<Ba, 3°>

However, in view of hypothesis (i) above

el fg<E:’ [T KCr-u?)dasdr = .
: IS é% <Ba’ fme(T-A>g“(A)dA>dr

- [5 <ut), [T K (-nu®drsde

and, therefore, (2.13) yields

ks ib) J=(t) > (2a+1)1 a?euy, Nig” - "Yo"2

+ 2a | <y, j?wg(—r)g(t)dt> (3




- (¢
- 2a <u®, Nu%

(u&+1)<g“, ffug(t-rlga(r)dt> ‘ 1

+

-

2€2a+1) [g<u®, [T K (r-0u*Q)ar>dr

o a
'<uy, u, >

where we have made use of hypothesis (v) above. If we set

Mr

I<uy, [O KCG-T)UCTIAT> (T4
= f s 2 /g
YZT

where ZT is given by (2.5) then routine estimates employing the
the Schwartz inequality, coupled with the assumption (2.6),

yield the lower bounds
a ¢t a 2 _ =
(2.16a) <u®, [Z K(t-T)u (r)dT> 2 - YMp o follg(p)llLS(H+’H_)dp

(2.16b)  -fg<u®, [T K (r-0u®)ar>dr
> = YM%’E Iz ffml|§t(t-r)I|LS(H u ydrdt
+95%.
and

a a 2
AR S Sny B ke e STt )

Combining the above estimates with (2.15), making use of the
definition of XT again, and using the assumption that

a > IlgolI/<go, EEO>% we easily obtain from (2.15)




a
€2.127) J&(t) 2 - r<B A 7 Fa'(t), R st < T

Therefore, by (2.9)

— 12 '
€2.18) FaFa" = (Q+1)Fa 2 - FFaFa e o A

or

(2.19) [ertcra’“)'Jf >0, 0st=<T

. Two successive integrétions of (2.19) easily yield the lower

bound

4 & & e TR G
E i (2.20) Fa () = Pa o (1-e )aFa(O)/PFa(O)]
The expression in the brackets above will vanish at

=ik 2

~

' provided that [PFa(O)Y&Fé(O)] < 1, But

I'F-(0) r&zlluoll2
(2.22) — = — €1
a Fa(O) 2a<ago, X

if, as per the hypothesis of the theorem, the
3 initial datum is restricted so as to satisfy ||u0ll2 < % <Ugs Vo>

By our other basic hypothesis, i.e., (2.3b), it follows that

t, < T and, therefore, sup Ilua(t)ll = + », Thus,
0<t<T ~
] a a
(2.23) 4o = sup |Ju ()] s y sup [lu (t)Il,
-o<t<T ~ -w<t<T ~




W

which contradicts (2.6) and establishes the growth estimate (2.4). i

The last theorem admits the following corollary whose proof

pafiac e S U S banindgd L oo

is immediate (based on our previous computations.:

Corollary II.1 Let f(a) be a real-valued function for O < a < =

with sup(giﬁl) < @, For each a > 0 let u® e Cz([O,Ta); H.) be
a<0 .

a strong solution to (2.la), on [O, Ta)’ subject to (2.lc) and

the initial conditions

o - o s
(2.24) u (0) = f(“)Bo’ gt(O) =Vs

Wiy Va>
where —29——3%— > % sup (féﬁl) and

lug ! a>0
(2.25) T, > L tn [20¢u5, vo>/20<u5, vo> - TEG@ 1y, l17]

Then for each a satisfying

Sk

(2.26) fla) 2 ||v0||/<go, NBO

~

it follows that

lkugs [OK(-TIUCTYdT>| Tk
= = = VE(a)

(2.27) sup lln_gm(t)ll+ 2 [
_m<t<Ta YZT

. o
where ZT is given by (2.5) with T » T

Havgng completed our formal discussion of problem A we
now turn our attention to the system consisting of (2.2a) - (2.2¢)

and state




Theorem II.2 For each real § > 0 let u® ¢ C7([0,T); H,) be &
strong solution of (2.2a) - (2.2¢c) and suppose that the imitial

datum satisfy

(2.28) <ugs Mu> 2 1ivglt?

Let § > 0 be any positive constant; then if

T > } tn (2a<u,, vy>/(285¢uy, vo> = Tliggl1¥))

where ag = (Tllugli?/2¢uy, vo2) ¢ &,

| <y (=2)U(s)ar>| 1%
(2.29) sup ll\j'll, 2 [ = I?.! = ] &

—wlt<T YIT

for all B, 0 < B < =,

Proof. The proof strongly resembles the line of argument followed
in the proof of the previous theorem with one important difference.

We assume that for some § = B, 0 < § < =

[
.30 <
(2 ) ) o:grl l\_a i, "T,i

where

Np g = ["‘.‘o' f?.'}(-ng(t)an.
T,8 I

2a,.<u V>
T>%ln § =0° -0 5
884<%9» Yo = Tliggl}

Defining Pi(t) = <g'(t), g‘(t) s 0 <t «T, we now compute that

=
(2.31) ] 142




'M .
Yy -
1‘
for any a > 0 ‘
" 2
(2.32) flfl - (O'l)r' 2 2 r' L..' » Oste«T?
where
, (2.33) Lb.l") ’ <9‘. !!"- ‘9.. ’:.!‘t-l)!'(!’dl)
i
- r‘!!. 2" - 00'1)‘?!0 l.l!’

A direct computation analogous to that used in passing from
(2.10) to (2.15), then yields

(2.38) L 5(t) 2 (2asddC<ugs Mug> = I1ygli?) = reud, obs

-

28(B) (2a41) | <y, [O K(=0)U(DIET>|

zotg', lul)

- -

s

(ic’l)cg'. I:.ftt-t)g.(t)dt>

2(2001)I§<g', [:.5‘(1-1)9’(A)dx>dt

If we now make use of (2.28), so as to drop the first expression
on the right-hand side of (2.3%), and then employ the assumpution
embodied in (2.30) to bound, from below, the last three expressions

in the above estimate we easily obtain

F ! 0
(2.35) Lu,i(t) By Pi(t) + 2(2«01)30)[(!0. I-.E(-t)g(t)dtﬂ

i
{
;
v
:

2 2a
- C2as1)vNg 5 [‘m"'!"lsm,.n_)




a+]
¢ G ol 1K@y 5 )%
+2 [T o 1K Ce=1) 1) dtdt]
0 /-=!ll LgCH, H_)
(2.36) L a(t) 2 - & Fx(t) + 2€20+0) |g(B) 1<u,, [ K(-1)UCT)dr>]
i O.l 7 l ‘ -o. - -

2
7 ’“r.i(;"!"ts(u,.u-)

- Tt

= -5 Pi(t)

in view of the definitions of [, and Np g+ Thus, by (2.32) and
(2.36,) it follows that

'
-(2.37) _ FgFfg - (a*1)Fg’ 2 - TFgFg, O st <T

for any a > 0. Integrating (2.37) we find the estimate

(2.38) Fg(t) = Fglo)(1 - (1-~"‘)oré(0)/rr§(0)1‘1

However, (2.38) implies that I‘B(t) tends to 4 = as

1 ot Xo°

t+*t, =Fin
g [”“.‘o’ %’ - ”".‘0”2]

(provided we now choose a = a.,

T S S e ———

- 2
(2.39) ag = (l‘llgoll /2 <ugs \_ro>) + 4




B R | o e

so that t_ exists). By virtue of the hypotheses of the theorem
T > t_ and thus sup llg‘ll = + ®», The contradiction to (2.30)

[o,T)
now follows via the same type of argument that was eemployed
in the last theoren. Q.E.D.

3. Growth Estimates for Holohedral Isotropic Dielectrics

Let Q ¢ 23 be a bounded region which is filled with a non-
conducting material dielectric; we assume that 3Q, the boundary
of Q, is smooth enough to admit application of the divergence
theorem. Let §, §, g, and 9 denote, respectively, the electric
field vector, the magnetic flux density, the polarization vector,
and the electric displacement vector in Q; the fields E and g

are related by
DA egh VE

where € 0 is a physical constant. If we define, in the usual

manner, the magnetic intensity H via

e gl B cou = &

where ¢ is the speed of light in a vacuum, then in a Lorentz

: reference frame (x',t), i = 1,2,3,Maxwell's equations have the

n form

E | 3B

. (3.1a) 5% + curl E = 0, div B = O
- = = i

1 2D

,3 (3.1b) curl H - 33 =0, divD =0




™ Py T T S i
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provided the density of free current, the magnetization, and

the density of free charge all vanish in Q and the dielectric
medium is non-deformable. In order to obtain a determinate
system of equations for the fields appearing in (3.la) and (3.1b)

we must specify a set of constitutive relations, e.g., in a

vacuum P = 9 and thus
(3.2) D = €oE> § = ¥o B

while in a rigid, linear, stationary nonconducting dielectric

these relations assume the form

(3.3)  D=¢-E B=yp-H

~

with € and p constant second order tensors; these latter relations

were first put forth by Maxwell [6] in 1873. A more general

.'theory was introduced by Volterra [7] in 1912 to treat the case

where the dielectric is anisotropic, nonlinear, and magnetized;

his constitutive equations had the general form

K

(3.4a) Q(f,t) =g §(x,t) + g(g(f,r)), X € Q
5t

(3.4b) §(§,t) & py gcg,t) + B (§(§,1), X € @,

If the functional P is linear and isotropic,and the body satisfies

various restrictions that follow from material symmetry considerations,

then (3.4a) can be shown to reduce to an equation of the form

(3.5) D(x,t) = ¢EGx,t) + [L ¢(t-T)E(x,T)aT, X € A,




=B

which embodies the earlier constitutive hypothesis of Hopkinson
[8]. The relations (3.4a), (3.4b) were critically examined by
Toupin and Rivlin [4] who showed that the a priori separation
of electric and magnetic effects which is hypothesized in these
equations is inadequate with regard to predicting such phenonmena
as the Faraday effect in.dielectrics. Toupin and Rivlin [4]

_ thus proposed an extension of the:theory embodied in (3.4a)

and (3.4b) to one specified by constitutive relations of the

form
n . n .
(3.6a) D(x,t) = o B G ] e, s B3 (x, 1)
* ]fmgl(t,r) * Ex,t)dt + ffwgz(t,r) + B(x,T)dt
' e 3) . (3,
(3.6b) H(x,t) = ] by « B (x,t) ¢+ Z dy « B Gx,1)
o bo = - 540 © %

o+ [ 1) ¢ EG,mddr + [Ty, (t,1) ¢ Blx,T)dT

: 3
where E(J)(x,t) = & (§ t), etc., aj... d. are constant
x i 3t 2w -

tensors and the kernels Qi’ wi’ i = 1,2, are continuous tensor
functions of t and T which are assumed to satisfy growth

conditions of the form

7

(3.60) ¢, (t,1) < C/-)P, o > 0

. It ¢« Joe shown that if the dielectric does not exhibit aging

then D and H are periodic functions of t whenever E and B are.
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By combining this result with the assumed growth conditions on
the kernel functions Qi’ *1 and employing early results of
Volterra on the theory of functionals (7] Toupin and Rivlin

(4] conclude that ¢, and v depend on t and T only through the
difference t-t; they then prove that if the dielectric has
holohedral symmetry (admits the full othogonal group as its-
group of material symmetry transformations) the consititutive
relations (3.6a) and (3.6b) can be.reduced to an uncoupled set
of the form

n o
) ajE‘J’cx,t> + [T 4(t-1IE(x,1)dr
R B

(3.7a) Q(g,t)

n .
(3.7b) HGx,t) = ) bja‘l’(x,t> + 5 y(t-1)B(x,1)dr
H(x e B Bx

where ¢,y are now scalar functions.
In this section we will examine the implications of the
growth estimates obtained in §2 for the special case of (3.7a),

(3.7b) which corresponds to the simplifying assumptions
(3.8) &; =2 0,0, =0, Jz1l

(
AN B R

:gh(x,t), -t st 0

(3.93) E(%,t)

:
0, ‘°°<t<".th

(3.9b)  B(x,t)

(B (x,t), -t s t<0
;Bh ’ » h> <

where th > 0 is a given positive constant and where E > is

SRR Lo oo b, i i
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A

assumed to satisfy

Sk T s ;

with a similar hypothesis applying to Bh(in [5] it was assumed |

that t, = 0). Therefore, the constitutive relations (3.7a),

(3.7b) reduce to . i

(3.11a) DGx,t) = agEGx,t) + [T ¢(t-DEx,1)d1, x ¢ @ |
Sl ) h s 5 |
and - |
(3.11b) HGet) = boEGX,t) + [T y(t-1)B(x,1)dt, x ¢ @
~ o~ -~ ~ h Lo ZBU. ~

where we assume that ¢,y are monotonically decreasing functions
which are (at least) twice continuously differentiable on (0,«). §

If we now set

(3.12) - #(t) = J -LM™MB), t =0 | i
n=1 1 \,
olet) = g; oCt), o7t = [T ot (t-m)p" T(rddr, n 2 2

h

and define ¥(t) in terms of W(t5 in an analogous fashion, then

it is easy to show that the technique of successive approximations,

when applied to (3.1la) and (3.11b), yields, respectively,

a619(§,t) + aalffthﬁ(t-1)9(§,r)dt, X € Q

(3.13a) §(§,t)

and

b51§(§,t) + baljfthv(t-r)g(E,r)dt, x € Q,

(3.13b)~. §(§,t)
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As a direct consequence of (3.%a) and (3.1la) we have

Oy =@ € £ < '~ ¢

D(x,t) = h

i D, (x,1), “tp St < 0
and, in view of (3.10),
(3.15) lim, fo (D, Cx, 1)) (D (x,t));dx = 0

t+-th

We shall, however, require that the past history D_ of the
electric displacement field satisfy a slightly stronger condition

than (3.15), namely, that

(3.16) 'lim+'Dh(x,t) = 0, wuniformly in Q
t+—th i3 > i

If, in addition, Ph(f’t) is continuous in t for ali t < 0 then
for all X e'n, Qh(§, -th) = Q (for our purposes it is sufficient
to assume that gh(g,t) is continuous in t for all t in some
’neighborhood of -t of the form [-th,o], ¢ < 0).

The inverted constitutive relations (3.13a) and (3.13b),
when coupled with Maxwell's equations, our hypotheses relative
to the past history Qn' and the vector identity

$2.17) AV(x) = grad(div V(x)) - curl curl V(x), X ¢ Q

-~ o~

now yi- 7 the following result regarding the evolution of the

electric displacement field D in a holohedral isotropic dielectric
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of the type specified by (3.1la) and (3.11b):

Lemma The evolution of the electric displacement field D(x,t),
in any holohedral isotropic nonconducting dielectric (which

conforms to the constitutive hypotheses (3.l1la) and (3.11b))is
governed by the following system of damped integrodifferential

equations in Q

32Di W o 32Dk |

3 ot y Lifar 2 .
- {
2 5

b ) Dk(T) |

)dTt

+

O
(-a—)w (t-1)6

JE, (¥Ct-0D, (1)
n (o}

- 6. e “=tearigy YT
o e ¥ 8xj3x£

0 & =.1,2.3, cq = bO/aOQ(O)

provided the past history D, satisfies D (Xrth) = 0 for all

X ¢ R and ¥(0) # O.

Proof By (3.13a) and the second Maxwell equation in (3.16) ic

follows that div E 0. Thus, by (3.17) |

(3.19) AE(x,t)

~~ .~

- curl curl §(x,t) . : :

However, by the first Maxwell relation in (3.la) and (3.1u4b)

we have
; (3.20) curl E(x,t) = - -5% B(x,t)
RS N S
) = - 5 5% HOLT) - g YIOHG,T)

- g; ffthvt(t-r)gcg,r>dr

E—
1
i
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Therefore,
k| 3.21) é§(§,t) = 53 T [curl §(§,t)3 - Sa ¥(0)curl Q(f’t)
l ,t
+ 5 /¢ ¥ (t-Tleurl Hx,1)dT
0 h g
= 2 D (x,t) + &= ¥(0)D,_(x,t)
R . b R
0 0
| ,
1l (t
+ B; !_th wt(t_T)QT()-E’T)dT

WY PR SIS

where we have employed the first Maxwell equation in (3.1b).

TR )

i However,

i

f

3 it 5 R - i

? (3.22) f_th ¥, (t-1)D_ (x,T)dT = j_th ¥ (t-1)D (x,T)dT
| = - ¥ (t-1)DCx,T) |t

E = - ¥ (t-1ID(x,T l_th

i g

| t &

? - f_th ¥ (t-1)D(x,1)dT L
i = ¥ (t-1)D(x,T)| T

i T ~ -t

é “"h

: + It ¥, (t-1)D(x,T)dT

{i -th tt =i

F and so (3.21) may be rewritten in the form

J

bR
(3.23) AE(x,t) = by (D, (x,t) + ¥(0)D (x,t)

oo A Sl

Y

+ ¥(0)D(x,t) + [T ¥ (t-1)D(x,1)dT)
-~ ~ -th vtt ~ ~




if we use the assumption that Dh(§, - th) =0 fop all x e 0,
The result now follows if we substitute for E on the left-

hand side of (3.23) from (3.13a) and rearrange terms. Q.E.D.

In conjunction with the system of integrodifferential equations
(3.18), for the components of the electric displacement vector

D, we will consider initial and boundary data of the form

(3.24a)  D(x,0) = DyGx), D, (x,0) = D, (x), x ¢ & 2
(3.24b) §(§,t) = 0, (§,t) € 90 x [-th, ap)n

It will be clear from the analysis presented below that our

results will also hold for more general boundary conditions

than the homogeneous condition specified by (3.24b). 1In order

to correlate the initial-boundary value problem (3.18), (3.24a),
(3.24b) with the abstract initial value problems considered in

§2 we introduce the same spaces which were employed in the analysis
presented in [1], i.e., we let Cg(ﬂ) denote the set of three
dimensional vector fields with compact support in ! whose components
are in C7(9) and we take H = LZ(Q)’ the completion of C;(Q) under
the norm induced by the inner-product

(3.25a) <V, W> : e fﬂ viw, dx

while H = Hé(ﬂ), the completion of CZ(Q) under the norm induced

(2 D, and D, are assumed to be continuous on §.

s




i
by the inner - product

: l Bvi awi
(T2in) evaegc o g g B

Finally H_ = H-l(ﬂ), the completion of CZ(Q) under the norm

ow.
- 3 1 %
(3.25¢) Ivllg-1 = supl [[Q vywedx|/([q ax dx) J
~ 0
It is well known that Hé(n) € thﬂ), both topologically and
algebraically, and that Hé(ﬂ) is dense in LZ(Q); we denote the

embedding constant for the inclusion map i: Hé(n) - L2(Q) by

~

y and define operators N ¢ LS(Hé(Q); H 1)) and
K € Lz((-m,w); (H (Q); H (9))) as follows: for any Vv e Hé(ﬂ)
~ . a.2vk "
(3.26a) (Nv); = ¥(0)leqgb;y 85, i o%g vils ¢g = by/an¥(0)
A~ o azvk
(3.26b) (g(t)z)i = W(t)vi - (—a)o(t)d.kﬁjz T
A o
To verify the formal symmetry of the operator ﬁ we computeca)
(3.27) T §Y>L G IQ Vl(gg)l

2

82v
¥ k
¥ [1g ep8itse s on, Vi% " vivyex |

% : avi Bvi avi
2 ‘”‘O’co[fan R - - Ja W, % dl‘]
- v vii?
by

(3) Any v ¢ n: (Q) satisfies v = 0 on 3R by virtue of a standard
iracé thedrem.




= - W) el IvIIZL + [IvIf2] = <Ny, v>
() el | el PR i
0 2 2
with a similar result for‘gtt), - ® < t < @, From (3.27) and

definition of ¢, it is clear that condition (ii) of §2, i.e.,

<v, Nv>, 20, Yy ¢ HY() will be satisfied if ¥(0) < 0 and
il v

(bO/aO) < 0. Also, for any Vv € Hé(ﬂ)

(3.28) <v, K(0)v> : = [q v;[K)v]; dx

= ¥(0) [, v,viax

bO Bzvk

V.

i
i ij nj1§

- i b,
YO llvlly - (;(—)-)No)[fQ v
oeE

ovV. 9V

o ik i i
Q 9x. IxX. ~
o S

: b
Bl + GReO 11yl

0

and, therefore, if (ao/bo) < 0 then

S S SRS, <y N NG TP 19U o4 AN

(3.29) - <v, K(O)v>, 20, Vv ¢ HI(R)
el v

proviﬁed $(0) > 0 and ¥(0) s O; with these latter conditions
statisfied, and (ao/bo) < 0, it is clear that the operator K(O0)

will satisfy condition (i) of §2. Clearly, in the present situation,




I' = ¥(0) and so we must require that ¥(0) > 0, We now waat 0
de .ineate the forms assumed by the hypotheses in (iii) of §2;

to this end we must first compute

l‘\_ .g(t ,'-"L [

(3.30) ll'_“t)“;s(n%(n); w2y * “gom) ”"“H%

v (K
Bpa g vy (t)!ll |
vdlo(ﬂ) 'vllug

.
1wyl (.-Q)O(t)llgllé

e o vl '"é

Ilvll,_

v
< nmm ( o <2 1eco
(n) |‘ol

IIVII l

b
< YT ¢ |;%| TIIP

T(t) = ¥(t), and in a similar fashion

(3.31) 1K Ce) | 1 “lian € Y2IPCE)) ¢ 20 TIE3Y
. K¢ LUy R), H ™ (a) L a,

Therefore, the conditions embodied in (iii) of §2 will be satified
by l:((t), as defined by (3.26b), provided

b
(2.32a) 72 [;IT(t)Idt + I:gllzlﬂt)ldt < =
and

(5.33b)  y? Jo ]t 1T(t-1)|dtdt + l o'[‘r[t 18(t=1) ldtdt < =
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for each T <« », Collecting our results we can state the following

Lenma The operators N ¢ LgUHA(8); H2(0)) and K ¢ L ((-=,=);
Lg(H3(@); H™1(R)), which are defined by (3.26a) and (3.26b),
respectively, satisfy conditions (i), (ii), and (iii) of §2
provided
(i*) (bolao) <0
(1i*) #0) < 0, ¥(0) £ 0
(1ii') e€0) 2 0

and T(t), o(t) satisfy (3.32a) and (3.32b) for each T < =,
(Additionally, we requires that Y(0) > 0 so that the damping
coefficient in the system (3.18) is positive).

As an example of the way in which the results of §2 apply
to the situation at hand we will consider the following initial-
value problem for b ¢ c?w0,1); H3(a)), 8 > 0:

-~ t -
(a.3s)  pb. + veorpf - w® o [l K-0pftgr =0, 0 <t et
8 [ 1
(3.35) p%(0) = by, DEC0) = D, (Dy, D, € H3(R))
o - ® € § € = ¢
(3.36) 0¥y = g n

g(l)gh(t), “t, s t< 0

where g(B8) is a monotonically increasing function of g for
0 « B8 <= and Ph is continuous in the II'IIL norm with
2

IIT-n(t)llL > 0as t =~ -t;. We assume that the conditions
2

delineated in the above lemma are satisfied so that i, g(t), satify




(i), (ii), and (iii) of §2; then the following result is a direct
cominquence of theorem I1.2: Let D° ¢ c?(to,m; HA(a)), 8 > O,
be 4 strong solution of (3.34) - (3.36), with ¥(0) > 0. Suppoie

that
(3.37a) 20| 11pg1121 + 1% 1 11D112 2 11D, 112
ao ~0 Ho ~O Lz ‘l L2
(3.37b) <D°, Dl’L > 0 (the form assumed by condition (iv) of §2)
G b 2
(3.3%7¢) ]o T(-t)<D,, D, (1)> dr < 29 ]t ¢(-1)<D,,D, (1)>. 1 drt
N -t ~0’ <h L a -t ~0’<h H
h 2 0 h 0
(the form assumed by condition (v) of §2)
and that
¥ 2
(3.374) T > groy tnl2mg<D,, 91>L2/2'6<PO’ 91>L2 - Y(O)IIQJlILZJ
for some § > 0, where
3 2
(3.38) LI (Y(O)llDollL2/2<90, §1>L2) + 48
then
(3.39) sup 11D%(t) )1, 2 X
~w<t<T ~ 0 Yip
bo| ;0 0 5
('z—lf_t ®(-1)<Dy, D, (1)>,1 dt - I-t T(-1)<Dy, D, (1)> d1)
0 h 0 h 2
where
3 Pof.1 , o Tt o
(3.40) [ - IEE (G + Joleceriat + [OT 1d(t-1) larat)

-

+ Y2GIE) |+ [RITIat + [T1E 1H(t-1) dran)




o

~

2 1y = W @il wtaan
+ Ioll§(t)llLstﬂé(ﬂ>; H- 1) 9t

< 48 RN o7 PR
. o I_m|l§(t“)"LScné(n); B2 (gyyPtat

Once g(B), the initial data 90(§), D (5), x € 2, and the pasi
history Qh(§,t), S T 0, have been specified, along with
the constitutive constants a; and b, and the memory functions
®(t) and Y(t), i TN I T, all of the quantities on the right-
hand side of (3.39) are computable. If only the form of eithex
$(t) or ¥(t) (or both) are known, e.g., ®(t) = exp(-Alt),

®(t) = exp(-k2t),with Xe > 0, A2 > 0 not specified or known a

1L
priori, then (3.39) could be used as the basis for a series of
experimental tests to try to determine (or simply bound) Al anc

12, i.e., we might hold the initial data, the past history Ph’

the time interval [-th, T), etc., fixed and measure sup IIDE(t)II

-th<t<T iy

as B is varied continously; in principle such a practice may be
difficult to carry out if we can not first verify that the
hypotheses of the above lemma, as well as (3.37a) - (3.37d), are
satisfied. Other experimental tests could be based on estimates
which are analogous to (3.39) and which follow by applying
Theorem II.1 and its Corollary to the present situation; the
delineation of the precise forms assumed by these estimates is
4 simple exercise, completely analogous to that which resulted

in obtaining (3.39) from Theorem II.2 and is, therefore, left

to the reader.

1
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